EcoLE NATIONALE SUPERIEURE D’ELECTROTECHNIQUE, D’ELECTRONIQUE, D’ INFORMATIQUE,
D’HYDRAULIQUE ET DES TELECOMMUNICATIONS

INP ENSEEIHT 2

Programming N-Ary trees
Quaternary trees
Applications to Image

Compression

DOURNAC Fabien

Masteére Informatique 2004 /2005

I Contents

1.1 _Representationl v v o o i e

223 function Nt EMDEY . « o o v e e e e e e e

[2.24 function Nt Valud

[2.2.16 procedure Nt Delete Child o v v v v e e e
[2.2.17 procedure Nt Delete Brotherl v v v v v v e e e

[3__Specifications of Quaternary generic Darkag_d

[3.1 Representationl o o o o

(3.2 Operationd

[4_Conception of Quaternay tree generic packagd
4.1 Structuration of datal
[12 ‘ - - -

ﬁ&.ﬁ_;zrgmluf_tneug_ud

S ot ot gt ot Ot

© 00 00 00 00~~~

15
15
15

16
16
16
16
17

18

I Introduction

The aim of this project is to develop generic packages on n-ary and quaternary trees. These packages will be
reused to implement another package allowing to achieve image compression and decompression.

CHAPTER

1
I Specifications of N-Ary generic
package

A n-ary tree is a rooted tree in which each node has no more than n children.

1.1 Representation

it can be represented by :

A value at the root of tree

A father tree

e A children tree

A brother tree

This structure will be implemented thanks to pointers.

1.2 Operations

Operations that one has to operate on n-ary tree are grouped into 3 categories : creation, consultation and
modification. Here are the list of procedures to code.

1.2.1 Creation

e Nt Create Empty: create an empty n-ary tree.

e Nt Create Leaf: create a n-ary tree with a value, without brother or father.

1.2.2 Consultation

e Nt Empty: check if tree is empty or not.

e Nt_Value: return value at the root of tree.

o Nt Father: return father tree of tree.

e Nt Child: return the n-th children tree of tree.
o Nt Brother: return the n-th brother tree of tree.
e Nt _Display: display all content of tree.

e Nt _Search: search for a value into tree and return tree whose root value is found. If nothing is found,
return an empty tree.

e Nt Number Children: return the number of chidren tree at first level.
e Nt Is Leaf: check if tree is a leaf (no child).

e Nt Is Root: check if tree has no father.

6 CHAPTER 1. SPECIFICATIONS OF N-ARY GENERIC PACKAGE

1.2.3 Modification
e Nt Change Value: change value at the root of tree.

e Nt Insert Child: insert a tree without brother at position of first child. Old child becomes the first
brother of inserted tree.

e Nt Insert Brother: insert a tree without brother at position of first brother.
e Nt Delete Child: delete the n-th child of tree.
e Nt Delete Brother: delete the n-th brother of tree.

e Nt Change: apply a function to each element of tree.

CHAPTER

2
I Conception of N-Ary generic
package

2.1 Structuration of data

A node is represented by a record type containing the value of the root, a pointer on the first child, a pointer
on the brother and another one on the father tree. The tree nr type is set to private for hiding from user
package the data structure chosen to represent the n-ary tree.

type node;
type tree_nr is access node;
type node is record
val: T;
first_child: tree_nr;
brother: tree_nr;
father: tree_nr;
end record;

We chose to pass as generic parameters the type of value of the root, the procedure which displays element
and the function that will be applied to each element.

generic

type T is private;

with procedure write (a: in T);

with function main_function (a: in T) return T;

2.2 Algorithmic refining

We describe now procedures and functions that we have coded.

2.2.1 function Nt Create Empty

function Nt_Create_Empty return tree_nr is
begin

return null;

end Nt_Create_Empty;

2.2.2 function Nt Create Leaf
function Nt_Create_Leaf (value : in T) return tree_nr is
a: tree_nr;

begin

:=new node;

.val:=value;

.first_child:=null;

.brother:=null;

.father:=null;
return a;

PP

8 CHAPTER 2. CONCEPTION OF N-ARY GENERIC PACKAGE

end Nt_Create_Leaf;

2.2.3 function Nt Empty

function Nt_Empty (a: in tree_nr) return boolean is
begin
return (a=null);

end Nt_Empty;

2.2.4 function Nt _Value

function Nt_Value (a: in tree_nr) return T is
begin

return (a.val);
exception
when constraint_error => raise tree_empty;

end Nt_Value;

We raise tree__empty exception if there is a constraint _error. We let it propagate up to test program where
it is processed.

2.2.5 function Nt Father

function Nt_Father (a: in tree_nr) return tree_nr is
begin

if Nt_Empty(a) then
raise tree_empty;
else if a.father=null then
raise relation_empty;
else
return a.father;
end if;
end if;

end Nt_Father;

If tree has no father, we raise relation empty exception.
2.2.6 function Nt _Child

function Nt_Child (a: in tree_nr; n: in integer) return tree_nr is
tree_curr: tree_nr;
begin

if Nt_Empty(a) then
raise tree_empty;
else
tree_curr:=a.first_child;
for i in 1..n-1 loop
tree_curr:=tree_curr.brother;
end loop;
return tree_curr;
end if;

exception
when constraint_error => raise relation_empty;
end Nt_Child;

2.2. ALGORITHMIC REFINING

We raise relation _empty exception if there is a constraint error.

2.2.7 function Nt Brother

function Nt_Brother (a: in tree_nr; n: in integer) return tree_nr is
tree_curr: tree_nr;
begin

if Nt_Empty(a) then
raise tree_empty;
else
tree_curr:=a;
for i in 1..n loop
tree_curr:=tree_curr.brother;
end loop;
return tree_curr;
end if;

exception
when constraint_error => raise relation_empty;
end Nt_Brother;

2.2.8 procedure Nt Display

For displaying the tree, we use a recursive auxiliary procedure which will allow to browse tree.
procedure Nt_Display(a: in tree_nr) is

begin

if Nt_Empty(a) then
raise tree_empty;

else
put(H ll);
Nt_Display_Aux(a," ");
end if;

end Nt_Display;
Auxiliay procedure is as follow:

procedure Nt_Display_Aux(a: in tree_nr ; str_shift: in string) is
str_inc: string(1..4);
begin

if a=null then
null;
else
write(a.val);
new_line;

if (not Nt_Empty(a.first_child)) then
put (str_shift&"|");
new_line;
put (str_shift&"+-- ");
if (not Nt_Empty(a.brother)) then
str_inc:="| ";
else
str_inc:=" "
end if;

-- we display child
Nt_Display_Aux(a.first_child,str_shift&str_inc);
end if;

10 CHAPTER 2. CONCEPTION OF N-ARY GENERIC PACKAGE

if (not Nt_Empty(a.brother)) then
put(str_shift);
-- we display brothers
Nt_Display_Aux(a.brother,str_shift);
end if;

end if;
end Nt_Display_Aux;

We browse firstly along the first children with a shift on display and along the brothers keeping the same
shift for all brothers.

2.2.9 function Nt Search

We use also here an auxiliary procedure that make browse the tree along two ways of recursivity, the children
one and the brothers one.

function Nt_Search (a: in tree_nr; e: in T) return tree_nr is

-- current tree

tree_curr :tree_nr;

-- boolean to keep on or not searching
stop: boolean;

begin

if Nt_Empty(a) then
raise tree_empty;
-- terminal case
else if a.val=e then
return a;
-- general case: we use Nt_Search_Aux auxiliary procedure
-- tree_curr is returned
else
stop:=false;
tree_curr:=Nt_Create_Empty;
Nt_Search_Aux(a.first_child,e,tree_curr,stop);
return tree_curr;
end if;
end if;

end Nt_Search;

The auxiliary procedure is as follow : we use a boolean, passed as data/results parameters, to finish the
recursive calls if value is found. If it is found, tree curr is set to a null pointer.

procedure Nt_Search_Aux (tree :in tree_nr ; e: in T ; tree_curr: out tree_nr ; stop: in out boolean
) is

begin

-- terminal case
if tree=null then
null;
else if tree.val=e then
stop:=true;
tree_curr:=tree;
-- we search firstly on child relation
else if not stop then
Nt_Search_Aux (tree.first_child,e,tree_curr,stop);
else null;
end if;
-- then we search on brothers relation
if not stop then
Nt_Search_Aux (tree.brother,e,tree_curr,stop);
else null;
end if;
end if;
end if;

2.2. ALGORITHMIC REFINING

end Nt_Search_Aux;

2.2.10 function Nt Number Children

We count the number of children of a tree passed as parameter.

function Nt_Number_Children(a: in tree_nr) return integer is

n:integer;
tree_curr:tree_nr;

begin

if nt_Empty(a) then
raise tree_empty;
else if a.first_child /= null then
n:=1;
tree_curr:=a.first_child;
while tree_curr.brother /= null loop
n:=n+1;
tree_curr:=tree_curr.brother;
end loop;
return n;
else
return 1;
end if;
end if;

end Nt_Number_Children;

2.2.11 function Nt Is Leaf

function Nt_Is_Leaf(a: in tree_nr)return boolean is
begin
if a.first_child=null then

return true;

else return false;

end if;

exception
when constraint_error => raise tree_empty;

end Nt_Is_Leaf;

2.2.12 function Nt Is Root

function Nt_Is_Root(a: in tree_nr)return boolean is
begin
if a.father=null then

return true;

else return false;

end if;

exception
when constraint_error => raise tree_empty;

end Nt_Is_Root;

2.2.13 procedure Nt Change Value

11

12 CHAPTER 2. CONCEPTION OF N-ARY GENERIC PACKAGE

procedure Nt_Change_Value(a:in out tree_nr; e: in T) is

begin
a.val:=e;
exception

when constraint_error => raise tree_empty;

end Nt_Change_Value;
2.2.14 procedure Nt Insert Child

procedure Nt_Insert_Child (tree: in out tree_nr ; tree_i: in out tree_nr) is
begin

if Nt_Empty(tree) then
raise tree_empty;
-- if tree to insert is empty, we do noting
else if tree_i=null then
null;
-- 2 possible cases: tree has a child or not
else if tree.first_child=null then
tree.first_child:=tree_i;
-- we insert tree_i at first child position and old child
-- become the first brother

else
tree_i.brother:=tree.first_child;
tree_i.father:=tree;
tree.first_child:=tree_i;
end if;
end if;

end if;
end Nt_Insert_Child;

2.2.15 procedure Nt Insert Brother

procedure Nt_Insert_Brother(tree: in out tree_nr ; tree_i: in out tree_nr) is
begin

if Nt_Empty(tree) then
raise tree_empty;
else if tree_i=null then
null;
else
tree_i.father:=tree.father;
tree_i.brother:=tree.brother;
tree.brother:=tree_i;
end if;
end if;

end Nt_Insert_Brother;

2.2.16 procedure Nt Delete Child

procedure Nt_Delete_Child (a: in out tree_nr ; n: in integer) is
-- saved trees: previous and following the child

a_prev: tree_nr;

a_next: tree_nr;

begin

if Nt_Empty(a) then

raise tree_empty;
-- if the n-th child does not exist, we do nothing

2.2. ALGORITHMIC REFINING

else if n>Nt_Number_Children(a) then
null;
-- if n=1, deleting the first child
else if n=1 then
a_next:=a.first_child;
a_next.father:=null;
a.first_child:=a_next.brother;
-- we save pointer on n-th child
-- ans pointer on child’s brother to delete
else
a_prev:=Nt_Child(a,n-1);
a_next:=a_prev.brother.brother;
a_prev.brother.brother:=null;
a_prev.brother.father:=null;
a_prev.brother:=a_next;
end if;
end if;
end if;

end Nt_Delete_Child;

2.2.17 procedure Nt Delete Brother

procedure Nt_Delete_Brother (a :in out tree_nr ; n: in integer) is

-- saved trees: previous and following the child
a_prev: tree_nr;
a_next: tree_nr;

begin

if Nt_Empty(a) then
raise tree_empty;
-- deleting the n-th brother
else
-- previous tree before brother to delete
-- if relation_empty is raised into Nt_Brother,
-- it propagates
a_prev:=Nt_Brother(a,n-1);
-- next tree after brother to delete
-- if a_prev or a_prev.brother is raised,
-- constraint_error is raised, then it propagates
a_next:=a_prev.brother.brother;
-- case where a_prev or a_prev.brother is not null
a_prev.brother.father:=null;
a_prev.brother.brother:=null;
a_prev.brother:=a_next;

end if;

exception

-- if a_prev or a_prev.brother is null, we do noting
when constraint_error => null;

end Nt_Delete_Brother;

2.2.18 procedure Nt Change

13

The main function "main_function" is passed as generic parameter when tree nary package is instancied.

procedure Nt_Change(a: in out tree_nr) is
begin

if Nt_Empty(a) then
null;
else
a.val:=main_function(a.val);
Nt_Change (a.first_child);
Nt_Change (a.brother) ;

14 CHAPTER 2. CONCEPTION OF N-ARY GENERIC PACKAGE

end if;

end Nt_Change;

CHAPTER

3
I Specifications of Quaternary
generic package

3.1 Representation

A quaternary tree is a tree with 0 or 4 children. These 4 children are called north-west, north-east, south-west
and south-east child.

3.2 Operations
The following operations are the same as the implemented ones for tree_nary package:

Qt_Create_Empty, Qt _Create Leaf, Qt _Empty, Qt_Value, Qt _Father, Qt _Display, Qt Search, Qt Is Leaf,
Qt_Is Root, Qt Change Value, Qt Change.

New functions to code are:

o Qt_ Build: create quaternary tree from a value and 4 child trees.
e Qt North West: returns the north-west child of quaternary tree.
e Qt North East: returns the north-east child of quaternary tree.
e Qt South West: returns the south-west child of quaternary tree.

e Qt_ South East: returns the south-east child of quaternary tree.

15

CHAPTER

4
I Conception of Quaternay tree
generic package

4.1 Structuration of data

Quaternary tree being a subcategory of n-ary tree, we declare a type "quaternary tree", which is a subtype
of n-ary tree. The generic parameters are the same as those of n-ary tree package.

4.2 Algorithmic refining

We use "renames" ADA directive in specification part. This will allow to reuse all procedures and functions
implemented into n-ary tree package. Example :

function Qt_Create_Empty return quat_tree renames Nt_Create_Empty;

We do the same thing for exceptions :

-- empty tree

treeq_empty: exception renames tree_empty;

-- no relation

relationg_empty: exception renames relation_empty;

We define a childq _empty exception for Qt _Build procedure.

4.2.1 procedure Qt Build

---- procedure Qt_Build: create quaternary tree from a value and
-——- and 4 child trees

---- parameters: tree_res, built tree

-- val, father value

-——— a_nw, a_ne, a_sw, a_se, respectively north-west,
-———- north-east, south-west and south-east children
---- post-conditions: if one of child is empty, we raise

-——- childq_empty exception

procedure Qt_Build(value: in T; t_nw, t_ne, t_sw, t_se: in out tree_quat; tree_res: out tree_quat)
is

begin

-- if one of child is empty, we raise childq_empty exception
if (Qt_Empty(t_nw) or Qt_Empty(t_ne) or Qt_Empty(t_sw) or Qt_Empty(t_se)) then
raise childq_empty;
-- otherwise we build quaternary tree
else
tree_res:=Qt_Create_Leaf (value);
Nt_Insert_Child(tree_res,t_se);
Nt_Insert_Child(tree_res,t_sw);
Nt_Insert_Child(tree_res,t_ne);
Nt_Insert_Child(tree_res,t_nw);

end if;

16

4.2. ALGORITHMIC REFINING 17

end Qt_Build;

4.2.2 function Qt North West

We use here Nt Child function which returns the n-th child of a tree.
function Qt_North_West(a: in tree_quat) return tree_quat is
begin

return Nt_Child(a,1);

end Qt_North_West;

We do the same thing for Qt North East (return Nt _Child(a,2)), Qt _South West (return Nt Child(a,3)),
Qt_South East (return Nt_ Child(a,4)).

CHAPTER

5
I Specifications of pimage package
with compression

The aim est to achieve compression and decompression on an image using a quaternary tree. The images
that we use are squares and their dimension is a power of 2. A color is defined from the 3 primary colors
(red, green, blue) and is integer coded.

The recursive compression algorithm of a image with dimension n is as follows : if image is homogeneous,
then we create a leaf whose root value is the color of image. If image is not homogeneous, we split it into
4 sub-images of dimension n/2, and we create a quaternary tree whose the four children are the 4 encoded
sub-images.

Browsing all the quaternary tree, we get a set of values representing the compressed image.
It is specified that pimage package allows to :

create a test image from a dimension and a matrix.
e load an image from a file.

e save an image into a file.

e display an image.

e load an encoded image from a file.

e save an encoded image into a file.

e achieve an operation on an image.

18

CHAPTER

H Conception of pimage package

6.1 Structuration of data

We choose to define a color by a 32 bits value (pixel). Image is a matrix of pixels. We use dynamic arrays.

-- subtype tree_im

subtype tree_im is tree_quat;

-- definition of primary color

subtype color_prim is integer range 0..255;

-- definition of pixel: value coded on 32 bits

type pixel is mod 2%%32;

-- image array

type image is array (integer range <>,integer range <>) of pixel;

6.2 Algorithmic refining

6.2.1 procedure im_ to tree

This procedure is building a tree from an image. We follows the encoding algorithm :

---- procedure im_to_tree: crate a tree from an image
---- parameters: im the image, n its dimesnion, a the created tree
-——- tol the tolerance used by function is_homogeneous

procedure im_to_tree(im: in image; n: in integer; a: out tree_im; tol: in intensity) is

im_nw,im_ne,im_sw,im_se: image(1..n/2,1..n/2);
a_nw,a_ne,a_sw,a_se: tree_im;

begin
-- case where dimension equals 1
if n=1 then

a:=Qt_Create_Leaf (integer (im(1,1)));
-- if it is homogeneous, we create a leaf with average color
else if is_homogeneous (im,n,tol) then
a:=Qt_Create_Leaf (integer (col_aver(im,n)));
else -- we build the tree dividing dimensions by two
for i in 1..n/2 loop
for j in 1..n/2 loop
im_nw(i,j):=im(i,j);
im_ne(i,j):=im(i,j+n/2);
im_sw(i,j) :=im(i+n/2,j);
im_se(i,j) :=im(i+n/2,j+n/2);
end loop;
end loop;

im_to_tree(im_nw,n/2,a_nw,tol);
im_to_tree(im_ne,n/2,a_ne,tol);
im_to_tree(im_sw,n/2,a_sw,tol);
im_to_tree(im_se,n/2,a_se,tol);
Qt_Build(-1,a_nw,a_ne,a_sw,a_se,a);

end if;
end if;

19

20 CHAPTER 6. CONCEPTION OF PIMAGE PACKAGE

end im_to_tree;

One has to browse all the tree and save the sequence into a file. That is done with save imagec and
tree_to_imc.

6.2.2 function is homogeneous

We explain here how is__homogeneous function deals with 3 possibles cases : tolerance is minimal (0), maximal
(100), or between these two values. If it is maximal, then we return a boolean set to true and a leaf is created
with the average value of the image (see procedure im _to_tree). If it is minimal, we check that all pixels
have the same value. Finally, for the middle case, we test the inequality abs(primary color-average) <=
tolerance on each pixel.

---- function is_homogeneous: function which checks if area of size n
-——- homogeneous. return a boolean

---- parameters: im image

-——- size n of a area

-——- tol tolerance for homogeneity

function is_homogeneous(im: in image; n: in integer; tol: in intensity) return boolean is

result: boolean;
val,i,j: integer;
c_aver: integer;

begin
result:=true;

case tol is
-- maximal tolerance allowed, image is considered homegeneous
when intensity’last => return true;
-- minimal tolerance, we compare first point with all others
when intensity’first => val:=integer (im(1,1));
i:=1;
while i<=n and result loop
j:=1;
while j<=n and result loop
result:=(im(i,j)=pixel(val));
ji=iLs
end loop;
i:=i+1;
end loop;
return result;
-- general case: we compute the average color and we extract the
-- 3 average primary colors that we compare to image pixels with
-- condition : abs(average primary color) <= tolerance
when others => c_aver:=integer(col_aver(im,n));
i:=1;
while i<=n and result loop
j:=1;
while j<=n and result loop
result:=(abs (get_blue (im(i, j))-get_blue (pixel(c_aver)))<=tol) and
(abs (get_green(im(i,j))-get_green(pixel(c_aver)))<=tol) and (abs(get_red(im(i,j))-get_red(pixel(
c_aver)))<=tol);
ji=j+i;
end loop;
i:=i+1;
end loop;
return result;
end case;

end is_homogeneous;

6.3. ALGORITHMIC REFINING FOR DECOMPRESSION 21

6.2.3 procedure save imagec

---- procedure save_imagec: save a compressed image into file from
-——- a tree
---- parameters: a built tree, n the dimension of image

procedure save_imagec(a: in tree_im ; n: in pixel) is

filename: string(1..4);
f: pack_pixel.file_type;

begin

put ("Enter a filename(4 characters): ");
get (filename) ;

skip_line;

create(f,out_file,filename) ;

write(f,n);

tree_to_imc(a,f);

close(f);

end save_imagec;

We call the recursive procedure tree to imc which browses all the tree.

6.2.4 procedure tree_to imc

————— procedure tree_to_imc: allow to convert tree to compressed
_____ sequence
————— parameters: a the built tree, f the logic name of file

procedure tree_to_imc(a: in tree_im; f: in pack_pixel.file_type) is
begin

if Qt_Empty(a) then
null;
else
if Qt_Value(a)=-1 then
write (f,2**24);
else
write(f,pixel(Qt_Value(a)));
end if;
tree_to_imc (Qt_Child(a,1),f);
tree_to_imc (Qt_Brother(a,1),f);
end if;

end tree_to_imc;

6.3 Algorithmic refining for decompression

Firstly, we must build a tree from encoded sequence (procedure load im encod and imc_to tree) and
then rebuild image from this tree (procedure tree_to_im).

6.3.1 procedure load im encod

---- procedure load_im_encod : build a tree from compressed

-——- sequence

---- parameters: a the rebuilt tree, n the dimension of original
-——- image

22

CHAPTER 6. CONCEPTION OF PIMAGE PACKAGE

procedure load_im_encod(a: out tree_im ; n: out pixel) is

filename: string(1l..4);

f: pack_pixel.file_type;

-- dimension of original image
dim:pixel;

begin

put ("Enter a filename(4 characters): ");
get (filename) ;

skip_line;

open(f,in_file,filename);

-- we read dimension

read (f,dim) ;

n:=dim;
a:=imc_to_tree(f);
close(f);

end load_im_encod;

Here we use auxiliary function imc_to_ tree.

6.3.2 function imc_to tree

This function allows to build a tree from encoded sequence of a compressed image.

---- function imc_to_tree: return a tree from of a compressed

-——- image

---- parameters: f the logic name of compressed file

function imc_to_tree(f: in pack_pixel.file_type) return tree_im is

-- children of quaternary tree
a,a_nw,a_ne,a_sw,a_se: tree_im;
v: pixel;

begin

read(f,v);

-- if value equals -1 (coded by 2**24), we create a leaf

if v /= 2**24 then
a:=Qt_Create_Leaf (integer (v));
else
a_nw:=imc_to_tree(f);
a_ne:=imc_to_tree(f);
a_sw:=imc_to_tree(f);
a_se:=imc_to_tree(f);
Qt_Build(-1,a_nw,a_ne,a_sw,a_se,a);
end if;
return a;

end imc_to_tree;

6.3.3 procedure tree_ to im

Image can be rebuilt from tree. Tree is tree_im and output image is im. We usei b, i f j b, j f to get

the shift between recursive calls.

---- procedure tree_to_im: allow to reconstruct original image from

I compressed image

---- parameters: a the rebuilt tree, im image to build
-_— i_b,i_f,j_b,j_f the indexed (begin and final)
-——- n the dimension of original image

6.3. ALGORITHMIC REFINING FOR DECOMPRESSION 23

procedure tree_to_im (a: in tree_im ; im: out image ; i_b,i_f,j_b,j_f: in integer) is
begin

-- terminal case
if Qt_Empty(a) then
null;-- general case
else if Qt_Value(a) /= -1 then
for i in i_b..i_f loop
for j in j_b..j_f loop
im(i,j) :=pixel (Qt_Value(a));
end loop;
end loop;
else -- we browse the children
tree_to_im(Qt_North_West (a),im,i_b,i_f-(i_f-i_b+1)/2,j_b,j_f-(j_f-j_b+1)/2);
tree_to_im(Qt_North_East(a),im,i_b,i_f-(i_f-i_b+1)/2,j_f-(j_f-j_b+1)/2+1,j_£);
tree_to_im(Qt_South_West (a),im,i_f-(i_f-i_b+1)/2+1,i_f,j_b,j_f-(j_f-j_b+1)/2);
tree_to_im(Qt_South_East(a),im,i_f-(i_f-i_b+1)/2+1,i_f,j_f-(j_f-j_b+1)/2+1,j_£);
end if;
end if;

end tree_to_im;

6.3.4 procedure thresh im

For an example of operation, we choose to do a binary threshold.

————— procedure thresh_im: perform a threshold on image
————— parameters: im the image to process, n its dimension
————— threshold: the threshold

procedure thresh_im(im: in out image ; n: in integer ; threshold: in integer) is
begin

for i in 1..n loop
for j in 1..n loop
if (integer(im(i,j))<= threshold) then
im(i,j):=0;
else
im(i,j):=1;
end if;
end loop;
end loop;

end thresh_im;

end pimage;

CHAPTER

7
I Validation of packages

7.1 n-ary and quaternary packages

Test program main _tree nary.adb and main _tree quater.adb use respectively tree_nary.adb and tree quater.adb
package. It is possible to make a tree for checking the good operating of all main above procedures and func-
tions.

7.2 pimage package

Tets program main_pimage.adb allows to create an image and validate compression and decompression. An
example of image is displayed as :

Ei
=
=]

Figure 7.1: Content of test image 8x 8

Its size equals to 260 bytes (64x4+4) because we save also the dimension. We take into account a tolerance
to see if image is homogeneous. The tree built with a minimal tolerance (0) is represented on the following
figure :

Figure 7.2: Content of tree for compression with minimal tolerance

Image compressed size equals to 104 bytes (25x4+4) with 4 bytes for dimension, which was expected. With
a maximal tolerance (100), we get a leaf with the average color of image (161) because this one is considered

24

7.2. PIMAGE PACKAGE 25
as homogeneous from criterion into is__homogeneous function.

with a tolerance equal to 80, we get this tree :

Figure 7.3: Content of tree for compression with tolerance equal to 80

We can notice that there will be a loss of information regards to test image with compression. Indeed, the
north-west part of image is seen as homogeneous with this tolerance. This is illustrated on this figure :

gy Ry oy B oy By

5]
L]
5
Ey
7]
5]
ey
i

Figure 7.4: Content of decompressed image 8x 8 a tolerance equal to 80

For each case, we save compressed image and check decompression.

I Conclusion

This project has enabled us to create a package to make compression and decompression of images. The
operations implemented for quaternary trees were reused and validated for encoding algorithm.

Sources of this project can be downloaded here : | "87

26

http://dournac.org/info/n7_report/pimage.tar

	Specifications of N-Ary generic package
	Representation
	Operations
	Creation
	Consultation
	Modification

	Conception of N-Ary generic package
	Structuration of data
	Algorithmic refining
	function Nt_Create_Empty
	function Nt_Create_Leaf
	function Nt_Empty
	function Nt_Value
	function Nt_Father
	function Nt_Child
	function Nt_Brother
	procedure Nt_Display
	function Nt_Search
	function Nt_Number_Children
	function Nt_Is_Leaf
	function Nt_Is_Root
	procedure Nt_Change_Value
	procedure Nt_Insert_Child
	procedure Nt_Insert_Brother
	procedure Nt_Delete_Child
	procedure Nt_Delete_Brother
	procedure Nt_Change

	Specifications of Quaternary generic package
	Representation
	Operations

	Conception of Quaternay tree generic package
	Structuration of data
	Algorithmic refining
	procedure Qt_Build
	function Qt_North_West

	Specifications of pimage package with compression
	Conception of pimage package
	Structuration of data
	Algorithmic refining
	procedure im_to_tree
	function is_homogeneous
	procedure save_imagec
	procedure tree_to_imc

	Algorithmic refining for decompression
	procedure load_im_encod
	function imc_to_tree
	procedure tree_to_im
	procedure thresh_im

	Validation of packages
	n-ary and quaternary packages
	pimage package

